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Abstract. In this work we investigate the influence of low frequency turbulence on Doppler spectral line
shapes in magnetized plasmas. Low frequency refers here to fluctuations whose typical time scale is much
larger than those characterizing the atomic processes, such as radiative decay, collisions and charge ex-
change. This ordering is in particular relevant for drift wave turbulence, ubiquitous in edge plasmas of
fusion devices. Turbulent fluctuations are found to affect line shapes through both the spatial and time
averages introduced by the measurement process. The profile is expressed in terms of the fluid fields de-
scribing the plasma. Assuming the spectrometer acquisition time to be much larger than the turbulent
time scale, an ordering generally fulfilled in experiments, allows to develop a statistical formalism. We
proceed by successively investigating the effects of density, fluid velocity and temperature fluctuations on
the Doppler profile of a spectral line emitted by a charge exchange population of neutrals. Line shapes,
and especially line wings are found to be affected by ion temperature or fluid velocity fluctuations, and
can in some cases exhibit a power-law behavior. These effects are shown to be measurable with existing
techniques, and their interpretation in each particular case would rely on already existing tools. From a
fundamental point of view, this study gives some insights in the appearance of non-Boltzmann statistics,
such as Lévy statistics, when dealing with averaged experimental data.

PACS. 32.70.Jz Line shapes, widths, and shifts – 52.35.Ra Plasma turbulence – 05.40.Fb Random walks
and Levy flights

1 Introduction

Spectral line shape studies have played a major role in the
investigation of the nature of atomic radiators and their
environment, in astrophysics as well as in laboratory plas-
mas. Indeed, depending on the dominant line broadening
mechanisms, it is for instance possible to retrieve the elec-
tron density or the ion temperature from the analysis of a
given line. However, in many cases actual plasmas are far
from thermal equilibrium, being inhomogeneous or having
non-Maxwellian velocity distributions, features which sig-
nificantly complicate the analysis of experimental data. In
addition, these departures from thermal equilibrium can
trigger instabilities, whose growth and non-linear satura-
tion eventually lead to the onset of turbulence [1–3]. The
importance of investigating the possible effects that tur-
bulence might have on line shapes has been acknowledged
very early, and the motivations of these studies were, and
still are, two-fold: first there is the need to quantify the
errors introduced by neglecting turbulence in routine di-
agnosis based on line-shapes. Then, the possible existence
of significant deviations could be used to diagnose turbu-
lence itself.
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Historically, a large number of papers ([4,5] and ref-
erences therein) have dealt with the Stark effect result-
ing from turbulent electric fields, such as those associated
to a high supra-thermal level of Langmuir waves [6] or a
low frequency microfield [7]. Starting from the seminal pa-
per by Mozer and Baranger [8], several models have been
devised to include turbulent Stark broadening in the cal-
culation of line-shapes. The results thus obtained are rel-
evant to plasmas for which Stark effect is dominant com-
pared to Doppler effect. There are however situations for
which this ordering is reversed, and important examples
are edge plasmas of magnetic fusion devices such as Toka-
maks in the ionizing regime. For these low density plasmas
(Ne ≤ 5× 1020 m−3), Zeeman and Doppler effects are the
dominant broadening mechanisms for low lying lines such
as the Dα (transition between the levels n = 3 and n = 2
of the atomic deuterium). In such cases, line shape stud-
ies essentially provide measurements of the emitters veloc-
ity distribution, and have so far brought valuable results
concerning the origin of neutrals in edge plasmas [9–12].
However, these plasmas are known to be strongly turbu-
lent, i.e. the level of fluctuation of the fluid fields char-
acterizing the plasma can rise up to 30% [2,13,14]. The
experimental characterization of these fluctuations is of
first importance to analyse drift-wave (DW) turbulence,
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which is held responsible for the so called anomalous trans-
port degrading the quality of the confinement [3]. The
study of the Probability Density Functions (PDF) of the
plasma fields is of particular interest since significant de-
viations from Gaussianity have been observed (e.g. [15]).
The latter have serious consequences for plasma confine-
ment, because they can markedly enhance turbulent trans-
port. Various experimental techniques have been used to
carry out turbulent fluctuations measurements, and are
reviewed in reference [13]. Optical diagnostics have so
far relied on active spectroscopy techniques, in particu-
lar on Beam Emission Spectroscopy (BES). The latter al-
lows to diagnose the time behavior of turbulent density
fluctuations at the edge of Tokamaks (e.g. [16,17]). Ion
temperature and parallel velocity fluctuations have been
measured using High Frequency Charge Exchange Recom-
bination Spectroscopy (HF-CHERS) [14]. An optical diag-
nostic of turbulence based on passive spectroscopy would
be very convenient, this comparatively simple technique
being already available on numerous experiments. More-
over, passive spectroscopy is the only available technique
in Astrophysics.

As an example, we will consider the case of the Balmer
α of hydrogen isotopes (Dα for the case of deuterium),
since it is one of the most routinely monitored line in edge
plasmas, being both intense and optically thin. In Sec-
tions 2 and 3, the expression of the measured line profile
is carefully discussed to emphasize the role of the spa-
tial and time averages involved in the measure. We show
in Section 2 that a neutral population created by charge
exchange can be considered as being in a local equilib-
rium characterized by the local density, temperature and
fluid velocity of the ions. In Sections 4 and 5, we show
that in presence of low frequency turbulence, the Doppler
profile gives access to an apparent velocity distribution.
By further developing the model only briefly presented
in [18,19], this apparent VDF is reexpressed in terms of
the PDF of the fluid fields. In Section 6, the influence
of density, fluid velocity and temperature are successively
investigated in details. The experimental relevance of the
results thus obtained is discussed. Finally, it is shown in
Section 7 that for particular choices of the statistical prop-
erties of the turbulent fluctuations, the apparent VDF be-
comes a Lévy distribution. This result establishes a clear
connection with one of our previous work [20], in which
we investigated the possible origin of a power law behavior
observed in the line wings of Dα spectra measured in the
former ergodic divertor configuration of the Tore Supra
Tokamak.

2 Expression of the measured spectra

Let us first define precisely the observable quantity for
a spectrally resolved passive spectroscopy measurement.
First of all, obtaining the spectrum emitted by the plasma
(which will be referred to as the measured spectrum in the
following) from the raw spectrum involves deconvolution
of the apparatus function. In practice, the theoretical spec-
trum is convolved with the latter before being compared

to the raw spectrum. The radiation emitted by the plasma
is integrated both along the Line Of Sight (LOS) and dur-
ing the acquisition time of the spectrometer, denoted by
τm. The observable intensity Imes(∆λ), where ∆λ stands
for the wavelength detuning from the center of the line, is
thus given by the following expression

Imes(∆λ) =
∫ τm

0

∫
L
Iloc(∆λ, z, t)

δS

4πz2
dz dt, (1)

where Iloc(∆λ, z, t) is the local line shape emitted at a
given distance z from the detector along the LOS L. Here
δS stands for the detector active area. Assuming the latter
to be delimited by z1 < z2 such that L = z2 − z1 � z1,
equation (1) reduces to

Imes(∆λ) � δS

4πz2
1

∫ τm

0

∫ z2

z1

Iloc(∆λ, z, t)dz dt. (2)

We now introduce the local absolute brightness

b(z, t) =
∫ +∞

−∞
Iloc(∆λ, z, t) d∆λ, (3)

and define the local line shape normalized to unity by
I(∆λ, z, t) = Iloc(∆λ, z, t)/b(z, t). In the remainder of this
paper, we will deal with the measured profile normalized
to unity, given by

Imes(∆λ) =
1

τm

∫ τm

0

1
L

∫ z2

z1

B(z, t)I(∆λ, z, t)dz dt. (4)

where the relative brightness B is defined by

B(z, t) =
b(z, t)

(1/τm)
∫ τm

0 (1/L)
∫ z2

z1
b(z, t)dtdz

. (5)

So, the measurement process both entails a spatial and a
time average of the local profile. In order to achieve time
resolved measurements, the acquisition time τm should be
chosen shorter than the typical turbulent time, which is
associated to the time variations of the functions B(z, t)
and I(∆λ, z, t). However, such a choice would generally
result in spectra having very low signal to noise ratios. In
this work we deal with the opposite situation, where the
acquisition time is much larger than the typical turbulent
time scale. In fact, this generally corresponds to the actual
situation for passive spectral line shapes measurements.
The next step in the modeling consists in relating the local
brightness B and the local profile I to the parameters
characterizing the plasma.

3 Modeling of the local profile

In this section we will first describe the model that will be
used to describe the plasma, i.e. a set of fluid equations.
The remainder of the section will present the expressions
of the local brightness and profile relevant to edge plasmas
typical conditions.
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3.1 Plasma description

We are interested in plasmas which can be described by
a set of N macroscopic fields ϕi, denoted in a shorthand
way by

ϕ = {ϕ1(r, t), . . . , ϕN (r, t)}. (6)
The latter set of fields includes the density, temperature
and fluid velocity for each species. These fields are solu-
tions of a set of fluid equations [21,22]. The fields ϕi(r, t)
obey conservation equations

∂ϕi

∂t
+ ∇ · Γi = Si(ϕ), (7)

where Si(ϕ) is a source term, and Γi is a flux. The lat-
ter is given by the sum of a diffusive and a convective
flux Γi = −κi(ϕ)∇ϕi + uϕi, where u = ϕj is a velocity
field and κ(ϕ) is the diffusion coefficient for the field ϕi.
It is furthermore assumed that this set of fluid equations
describes a turbulent stationary state, for which the sta-
tistical properties of the plasma do not change during the
acquisition time τm. For each species, the validity of the
fluid description relies on the orderings τ � ν−1

coll and
Λ � λcoll, where τ (resp. Λ) is the typical time (resp.
length) scale of variation of the fluid fields, νcoll the colli-
sion frequency and λcoll the mean free path. In the case of
DW turbulence in edge plasmas, we have τ ∼ 10–100 µs
and Λ ∼ 1 cm [13]. These orderings ensure that both the
electrons and ions VDF remain close to a local Maxwellian
at each time and location [21,22], that is

F (v, r, t) �
(

m

2πT (r, t)

)3/2

exp
(
−m(v− u(r, t))2

2T (r, t)

)
,

(8)
where m, T (r, t) and u(r, t) are respectively the mass, the
temperature field expressed in eV, and the fluid velocity
field of either electrons or ions.

The calculation of the neutrals VDF requires the use
of a refined model. Indeed, there are different sources of
neutrals in edge plasmas of Tokamaks, each of them giving
birth to a single class of neutrals. These classes, charac-
terized by different temperatures, coexist since the den-
sity is usually too low in order to ensure their complete
relaxation toward the background local equilibrium. The
lowest temperature class originates from the dissociation
of molecules released from the wall, whereas those hav-
ing larger temperatures are mainly attributed to charge
exchange reactions (e.g. [9–12]). In the following, we will
only consider the class of neutrals locally created by charge
exchange reactions, which plays an important role for the
line wings behavior. Indeed, it will be shown that tur-
bulence affects these regions of the spectra. In order to
model the VDF of these emitters, we can once again take
advantage of the separation of scales between atomic pro-
cesses and turbulence. In fact, the inverse of the charge
exchange rate is of the order of a few µs [23], i.e. shorter
than the typical turbulent time scale. As a result, the emit-
ters VDF remains at each time close to that of the ions,
given by equation (8). From the microscopic point of view,
the emitter’s VDF thus appears as a Maxwellian charac-
terized by a set of slowly varying macroscopic fields.

Fig. 1. Plot of the brightness per emitter times the elec-
tron density as a function of the electronic temperature on
a logarithmic scale, for two densities Ne = 1018 m−3 and
Ne = 1019 m−3. The temperature dependence is weak for
Te > 15 eV.

3.2 The local brightness

The local line brightness is directly related to the popula-
tion of the transition upper atomic level. In general, this
population has to be calculated by taking into account the
contributions of the different processes (for instance colli-
sions, charge exchange, radiative decay) populating or de-
populating the levels. If the fluid fields characterizing the
plasma vary slowly on the typical time scales associated to
these processes, a stationary approach is suitable to calcu-
late the brightness. The levels populations are assumed to
be time independent and are calculated using the values
of the fields ϕ(r, t) at each time and location. In practice,
the brightness essentially depends on the electron density
Ne(r, t) and temperature Te(r, t). We have performed a
calculation of the brightness per emitter B1 (defined as
B(r, t) = N0(r, t)B1(ϕ(r, t)), where N0(r, t) is the density
of emitters) for the Dα line in edge plasma conditions,
i.e. Ne = 1018–1019 m−3 and Te = 1–100 eV, using the
code SOPHIA [24]. The electron density dependence of
B1 is found to be linear, in accordance with the fact that
the upper level of the transition is essentially populated
by electronic collisions from the ground state. This leads
to a quadratic behavior of the brightness with Ne, since
N0 ∝ Ne. The influence of the electron temperature on the
brightness is more subtle, as shown in Figure 1 for two
different densities. The existence of a maximum reflects
the competition between the growth of the electron colli-
sions cross-section with temperature, which dominates the
small temperatures behavior, and the ionisation process.
For electron temperatures larger than 15 eV, the influence
of Te on the brightness is weak, and in the remainder of
this paper,the brightness will be treated as a function of
the electron density only.
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3.3 The local line shape

The ∆λ dependence of the local profile I(∆λ, z, t) is de-
termined by the dominant line broadening mechanisms. In
magnetized plasmas, Zeeman, Stark and Doppler broaden-
ings should a priori be taken simultaneously into account.
In general, the local profile normalized to unity can be
written as the following convolution product

I(∆λ, z, t) =
∫

d∆λ′IZS(∆λ − ∆λ′, z, t)ID(∆λ′, z, t),

(9)
where IZS is the local Zeeman-Stark profile, which de-
scribe the broadening resulting from the effect of the mag-
netic and electric fields on the emitters energy levels [4].
The Doppler profile ID is related to the wavelength shift
introduced by the movement of the radiator along the
LOS, and is thus directly given by

ID(∆λ, z, t)d∆λ = f(vz , z, t)dvz, (10)

where f(vz , z, t) stands for the emitters VDF along the
LOS, obtained from (8) upon integrating over the two
components of the velocity perpendicular to the LOS

f(vz , z, t) =
∫ ∫

dvxdvyF (v, z, t). (11)

It should be noted that equation (10) would not be valid
if the velocity of the emitter were not constant because
of the collisions during the emission process [25]. If ∆ωD

denotes the Doppler line width expressed in units of pul-
sation, equation (10) assumes that τ−1

coll � ∆ωD. This or-
dering is largely satisfied in edge plasmas, and is moreover
not inconsistent with the assumption τcol > τ underlying
the validity of equation (8). For a given line, the rela-
tive importance of the different broadening mechanisms
depends on plasma conditions, i.e. on the average values
taken by the plasma density and temperature, but also on
the detuning ∆λ. In the following, we will again discuss
the case of the Dα line, first for the bulk of the line and
then for line wings, which are the regions of the spectra
defined by |∆λ| � ∆λ1/2, ∆λ1/2 being the HWHM (Half
Width at Half Maximum) of the profile. In the center of
the line, Stark effect is negligible for densities lower than
Ne = 5 × 1020 m−3, an ordering which is usually (but
not always) satisfied in edge plasmas. In addition, since
the magnetic field is larger than 1 T, fine structure can
be neglected [26]. Therefore, the Dα line splits into three
Doppler-broadened Zeeman components (one π and two
σ). The lateral σ components are equally separated from
the central π component. Under parallel observation with
respect to the magnetic field, only the σ components are
observable. Although negligible in the bulk of the line,
Stark effect might become dominant in the line wings for
detunings larger than a value ∆λS(Ne) which is an in-
creasing function of the density. Therefore, in the remain-
der of the paper it should be understood that the Doppler
line wings are the regions of the spectra for which both
orderings |∆λ| � ∆λ1/2 and |∆λ| < ∆λS are simulta-
neously valid. The existence of such a regime depends on

the plasma conditions. Its study is relevant in the range of
plasma parameters considered here [27], and consequently
Stark effect will be neglected. However, it should be em-
phasized that the statistical formalism which is developed
in Section 5 would also be applicable if Stark effect were
not negligible. In the latter case, the local profile should
be calculated using equation (9) instead of equation (10).

According to equation (10), the Doppler spectrum of
a single Zeeman component is proportional to the emit-
ters VDF f along the line of sight. As previously ex-
plained, we consider a class of neutrals created by charge
exchange reactions, whose VDF is approximated by a lo-
cal Maxwellian. The corresponding expression of the local
Doppler profile is given by

ID(∆λ, r, t) =
√

m

2πT (r, t)
exp

⎛
⎜⎜⎜⎝−

(
∆λ − λ0

c
uz(r, t)

)2

2λ0

mc
T (r, t)

⎞
⎟⎟⎟⎠ ,

(12)
where m is here the emitters mass, λ0 the unperturbed
wavelength of the transition under study, c the speed of
light, T (r, t) the ion temperature, and uz(r, t) the compo-
nent of the ion fluid velocity along the LOS.

4 Apparent velocity distribution

Gathering the results of the sections above, we obtain the
following expression for the measured profile normalized
to unity

Imes(∆λ) =
1

τm

∫ τm

0

dt
1
L

∫
dz B(ϕ(z, t))ID(∆λ, ϕ(z, t)),

(13)
which is now expressed in terms of the fluids fields describ-
ing the plasma. The apparent velocity distribution function
fa(vz) is straightforwardly deduced from the measured
spectrum by

Imes(∆λ)d∆λ = fa(vz)dvz , (14)

in analogy with equation (10). This VDF is an average
of the local emitters VDF over time and space. Indeed,
combining equation (13) and equation (14) leads to the
following explicit expression

fa(vz) =
1

τm

∫ τm

0

dt
1
L

∫
dz B(ϕ(z, t)) f(vz, ϕ(z, t)).

(15)
The apparent VDF fa can be given a deep physical mean-
ing as will be shown in Section 7.

Intuitively, in plasmas where the fluctuation rate is
low, fa should remain close to a Maxwellian feq charac-
terized by the time and space averaged values of the tem-
perature and the velocity fields, respectively denoted by
T0 and uz0, i.e.

fa(vz) � feq(vz ; T0, uz0). (16)
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Conversely, in a situation where strong fluctuations occur,
there is a priori no obvious reason for which the appar-
ent velocity distribution should remain close to the av-
erage Maxwellian given by equation (16). In particular,
in edge plasmas the fluctuation rate can rise up to sev-
eral tens of percents. The validity of equation (16) then
clearly becomes questionable, and equation (15) should
be used instead. A calculation of the apparent VDF fa

can be carried out from the latter equation once the solu-
tions of the fluid equations are known, i.e. the time and
space dependences of each of the fields ϕi(r, t) have been
worked out. Because of the non-linear nature of the fluid
equations and the complexity of the geometry, this calcu-
lation would best be achieved numerically. Although such
an approach might be able to encompass the complexity
of the problem, we find it worthwhile to begin with a sim-
pler one in order to gain insights on the kind of effects
that turbulence might produce on spectral line shapes.

5 Statistical formalism

5.1 Expression of the profile

In the following, we will take advantage of the fact that
the acquisition time of the spectrometer is usually much
larger than the typical time scale of the turbulence τ . Let
us first note that upon using an appropriate normalisation
for the δ function, the following relation holds for any z
and t ∫

N

N∏
i=1

δ(Φi − ϕi(z, t))dΦ1...dΦN = 1, (17)

where Φi is the sample space variable corresponding to the
value of the field ϕi at point (z, t). Introducing this iden-
tity into equation (15), interchanging the order of time
and sample space integrations, and finally making use of
the delta function sifting property yields the following ex-
pression for the apparent velocity distribution function

fa(vz) =
∫

dz

L

∫
dΦδ(Φ − ϕ(z, t))B(Φ) f(vz , Φ). (18)

The bar denotes a time average of the delta functions
product, and is time independent because of the stationar-
ity assumption. This is by definition the joint Probability
Density Function (PDF) of the fields ϕi at point z, de-
noted by

P(Φ1, · · · , ΦN , z) =
N∏

i=1

δ(Φi − ϕi(z, t)). (19)

The apparent VDF becomes

fa(vz) =
1
L

∫
L

dz

∫
dΦP(Φ, z)B(Φ) f(vz , Φ), (20)

and finally, upon integrating on the space coordinate z,
the apparent VDF is given by

fa(vz) =
∫

dΦW (Φ)B(Φ) f(vz , Φ), (21)

where the spatially integrated PDF W (Φ) is obtained from

W (Φ) =
1
L

∫
dzP(Φ, z). (22)

In the remainder of the paper we shall furthermore as-
sume homogeneous turbulence along the line of sight, that
is W (Φ) ≡ P(Φ, z). In edge plasmas, this requires that the
size of the emitting zone should be small with respect to
the gradient length. This is more likely to be the case
when the line of sight is parallel to the magnetic field
lines, even though radial gradients could induce sufficient
radial localization of the emission. To conclude on this,
let us emphasize that the role of time and space are sym-
metric, and that instead of a time average we could have
introduced space averages. In the case where turbulence
is both stationary and homogeneous the two averages can
equivalently be introduced.

In the following, we will use a stochastic model for tur-
bulence, the fields ϕ being considered as random functions.
In this case it is interesting to convert the time average
in equation (19) to an ensemble average. The inequality
τ � τm, where τ is the typical time characterizing turbu-
lent fluctuations, justifies the use of the following ergodic
theorem [28]

lim
τm→+∞

1
τm

∫ τm

0

δ(Φ−ϕ(z, t))dt = 〈δ(Φ − ϕ(z, t))〉 , (23)

where 〈·〉 denotes the ensemble average. This reformula-
tions allows to make contact with the results of the Sinai
model, to be presented later on.

5.2 Discussion

In the frame of our statistical reformulation, it is no longer
necessary to know the solutions of the fluid equations in
order to calculate the apparent VDF. Instead, the joint
PDF of the turbulent fields should have been computed. A
straightforward approach would be to rely on a fluid code,
so as to compute histories of the different fields, and then
their PDF. As we have already pointed out, this would re-
quire heavy numerical computation, especially in order to
obtain the PDF tails with a good accuracy. Furthermore,
if such calculations were carried out, any statistical refor-
mulation would obviously be superfluous, and the appar-
ent VDF could directly be obtained from equation (15).
An approach more suited to our formalism should pro-
ceed directly at the PDF level. Formalisms allowing to
calculate turbulent fluctuations PDFs are however not yet
very well developed, for a review see reference [1]. Deal-
ing with a realistic set of coupled fluid equations is out
of reach at the present time, and work in this direction
has been limited to the simplest plasma turbulence mod-
els, such as the Hasegawa-Mima equation [29]. The next
section will nevertheless be devoted to present one of the
most studied approach, initially developed by Pope [30].
The results thus obtained for the ion temperature PDF
should not be understood as encompassing the complex-
ity of Tokamak edge plasmas turbulence. Their interest is
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to shed some light onto what governs the PDF shape in
a simplified model. Calculations of the apparent VDF for
different values of the model parameters will then allow to
draw conclusions on the properties that turbulence should
have so as to significantly affect line shapes. This is the
main advantage of our statistical reformulation.

5.3 Determination of the PDF from the fluid equations

Let us consider the passive advection of a scalar ϕ(z, t)
solution of equation (7), in which the source term is an
arbitrary function of ϕ and the flux Γ is the sum of a con-
vective term and a diffusive term. The convective velocity
field u is assumed to be a stochastic field, the statistical
properties of which are known. In edge plasmas u would
be the electric drift velocity, which is divergence free to
a good approximation. In order to calculate the apparent
velocity distribution function from equation (21), the spa-
tially integrated joint PDF of velocity and temperature,
denoted by W (u, Φ), should be calculated. Here, we will
limit ourselves to the modeling of the marginal distribu-
tion W (Φ), obtained by integrating W (u, Φ) over the ve-
locity. Indeed, this will be sufficient to highlight the salient
points of the model. Assuming homogeneous turbulence,
and then following Pope [30], the time dependent PDF
W (Φ, t) is shown to obey a Fokker-Planck like equation
with a negative diffusion coefficient

∂W

∂t
=

∂

∂Φ
[S(Φ)W ] − ∂2

∂Φ2
[D(Φ)W ], (24)

where S(Φ) is the source term in the fluid equation. The
expression of the function D(Φ) will be discussed below.
The stationary solution of the latter equation is

W (Φ) =
C

D(Φ)
exp

(
−
∫ Φ

0

S(w)
D(w)

dw

)
. (25)

As a result, in the PDF approach a non-linear source term
S does not introduce any closure problem, unlike in the
moment based models [1]. The problem remains nonethe-
less unclosed, since the function D(Φ) is in general not
expressible in terms of W (Φ) or S(Φ) alone. Indeed, the
shape of this function depends on the correlations between
Φ and its gradient. More precisely, it can be recast in the
following form

D(Φ) =
1

〈∇Φ〉2
∫

d(∇Φ)P(∇Φ|Φ)(∇Φ)2 , (26)

where P(∇Φ|Φ) is the PDF of the gradient of Φ, condi-
tioned to a given value of Φ [30]. In order to obtain this
PDF, an equation for the joint PDF of Φ and its gradi-
ent should be written [31], which in turn would involve
correlations with higher orders gradients. Eventually, one
ends up with an infinite hierarchy of equations, involving
the joint PDFs of Φ,∇Φ,∇2Φ, ... In addition, it should be
kept in mind that the statistical properties of the velocity
field u, while not appearing explicitly in equation (25), do

δ

Fig. 2. Plot of the Sinai PDF for T0 = 30 eV, k = 10 and for
different values of the fluctuation rate δT/T = 10, 20, 30%.

actually affect the shape of D(Φ) through equation (7),
as should the expression of S(Φ). The closure of this hier-
archy has proven to be difficult to address, and is largely
beyond the scope of the present work [1]. For our pur-
poses it will be sufficient to present an early attempt to
this closure problem, due to Sinai and Yakhot [32], which
leads to results consistent with subsequent findings based
on refined analysis [33,34]. Their work deals with passive
advection of temperature in homogeneous decaying tur-
bulence, for which there is no source term in the tempera-
ture equation. The quantity of interest is X = (T −T0)/σ,
where σ2 = 〈T 2〉−T 2

0 . The field X obeys an equation anal-
ogous to equation (7), S(X) being a linear function of X .
The following Taylor development is used to express the
function D(X)

D(X) � 1 + kX2, (27)

where the parameter k ≥ 0 is a measure of the correlations
strength. Taking the limit k → 0 is equivalent to neglect
correlations altogether, and leads to a Gaussian PDF of
variance σ according to equation (25). A non linear source
term S(X) would however preclude Gaussianity even in
the correlation free case. When k > 0, the following result
for the temperature PDF is readily obtained

W (T ) � C(
1 + k

(
T−T0

σ

)2)1+1/2k
, (28)

where C is a normalization constant, σ controls the width
of the distribution, and 〈T 〉 � T0. Figure 2 shows a plot
of W (T ) for T0 = 30 eV, k = 10 and δT/T = σ/T0 = 10,
20, 30%. A few subtleties and limitations concerning the
use of this result deserve to be mentioned. First, it should
be noted that σ is actually time dependent. We shall as-
sume here that the acquisition time τm is chosen such
that σ/σ̇ � τm. This requires a separation of time scales
between the turbulent fluctuations and the decay of the
average quantities. Secondly, the correlations are treated
using the development given by equation (27), should only
be valid for values of the temperatures such that |X | � 1.
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However, as pointed out in reference [32], comparison to
numerical simulations have shown that the range of va-
lidity of equation (28) is much wider than expected, be-
ing such that |X | ≤ 7. It should be pointed out that
the distribution given by equation (28) is a Tsallis dis-
tribution (e.g. [35]) with q = (1 + 2k)−1. Therefore, in
this model, temperature fluctuations obey Tsallis non-
extensive statistical mechanics [35] when correlations ex-
ist, and Boltzmann statistics for vanishing correlations.

In the next section, we shall use these results as an
input for apparent VDF calculations.

6 Application to the case of one fluctuating
variable

In an actual turbulent plasma, several fields fluctuate, and
these fluctuations are coupled. According to equation (21),
the joint PDF of the relevant fields should be computed
in order to calculate the apparent VDF. However, the role
of density, velocity and temperature fluctuations on the
apparent VDF shape have no reason to be identical. As a
first approximation, it is therefore useful to consider the
idealized case in which only one field fluctuates. This will
shed light on which field fluctuations lead to the most
significant effects on line shapes.

6.1 Density fluctuations

Let us first consider density fluctuations. Since the local
VDF normalized to unity does not depend on density, the
integration over density fluctuations is trivially performed,
and the apparent VDF is found to be equal to the local
emitters VDF

fa(vz) =
∫ +∞

0

dn B(n)W (n)f(vz , T0) = f(vz, T0), (29)

where T0 is the constant plasma temperature. Therefore,
at this level of approximation, Doppler line shapes are
not sensitive to density fluctuations. The apparent VDF
should thus remain Gaussian with the temperature T0,
whatever the shape of W (n). This is in sharp contrast with
line brightness time resolved measurements, which essen-
tially provide information on density fluctuations. How-
ever, it should be noted that for cases in which Stark ef-
fect is not negligible, equation (29) no longer holds, since
the local line shape then strongly depends on the density.
As we have already pointed out, the formalism presented
here could nevertheless be used upon replacing the local
Doppler profile by the total profile given by equation (9).
This will be the subject of further work.

6.2 Fluid velocity fluctuations

Let us now investigate the case in which only the fluid
velocity fluctuates. In the following, W (uz) stands for the
PDF of the fluid velocity component uz = u · ẑ along

the line of sight (Oz), and σ2
uz for its variance. Chang-

ing the orientation of the line of sight therefore allows to
fully investigate anisotropic velocity fields. Starting from
equation (21), the apparent VDF reduces to

fa(vz) =
∫

W (uz)f(vz − uz, T0) duz, (30)

which is the convolution product of W and the local
Maxwellian characterized by the constant plasma tem-
perature T0. Equation (30) is a well-known result in
plasma spectroscopy, which is mentioned in classical text-
books [36]. A shape-independent definition of the apparent
temperature Ta from the profile should proceed from its
second moment

ξTa =
∫ +∞

−∞
fa(vz)v2

zdv. (31)

In the fluctuations-free case, the actual temperature of the
emitters T0 is recovered, whereas if fluctuations do occur
the apparent temperature is given by

Ta = T0

[
1 +

σ2
uz

v2
th

]
, (32)

where vth is the thermal velocity corresponding to the
temperature T0. The apparent temperature obtained from
the Doppler line width is thus not rigorously equal to the
actual temperature of the emitters. This result has al-
ready been mentioned by several authors, and was actually
used in the first models retaining the effect of turbulence
on Doppler line shapes in astrophysics [37]. To estimate
the extent to which Ta might differ from T0 in edge plas-
mas, we first have to specify the orientation of the line
of sight. Indeed, the statistical properties of the compo-
nent of the velocity perpendicular to the magnetic field
u⊥ can significantly differ from that of the parallel veloc-
ity u‖. For the perpendicular velocity u⊥ ∼ E × B/B2

we use a standard mixing length approximation, which
gives σu⊥/vth ∼ k⊥L⊥ � 0.3 where k⊥ is the typical
wave number for fluctuations and L⊥ the macroscopic
gradient length. The parallel velocity fluctuations rates
where found to be of the order of 1% in reference [14] for
TFTR supershot discharges. However, there are situations
where parallel velocity fluctuations might be larger, in par-
ticular when driven by a Kelvin-Helmholtz like instabil-
ity. In any case, it is reasonable to assume σu‖ � σu⊥.
Hence, σuz/vth � 30% leading to (Ta − T0)/Ta � 10%,
which roughly equals the uncertainty introduced by the
fitting procedure. This estimation suggests that the Dα
line width is not strongly modified by fluid velocity fluc-
tuations. However, as pointed out in reference [36], this
effect would be stronger for heavy emitters of mass M ,
because their thermal velocity is smaller (vth ∝ M−1).
This suggests that the so called impurity lines in fusion
plasmas are more sensitive to turbulent velocity fluctua-
tions. Now, considering only the line width is not sufficient
since the PDF W (uz) might be non Gaussian. In fact, re-
cent findings in astrophysical spectra [38–40], as well as
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Fig. 3. Plot of the truncated Lévy velocity PDF for α = 1.1,
σ = 0.2 for λ = 0.01 (dash-dotted line), λ = 0.15 (solid line),
λ = 5 (dashed line). The fluid velocity is plotted in units of the
thermal velocity vth, and each PDF is divided by its value at
the origin. The transition from a Gaussian behavior (parabola
for λ = 5) to the Lévy behavior (λ = 0.01, 0.15, concave in log-
linear scale, signaling slower than exponential decay) is clearly
seen. For v/vth large enough, i.e. ∼ 10 the PDF calculated for
λ = 0.01 eventually proves to have the slowest decay.

in Tokamak plasmas for poloidal electric fields (hence ra-
dial velocity fluctuations) [15], indicate strong deviations
from the Maxwellian, especially for line wings. As an illus-
tration, let us consider PDFs corresponding to truncated
Lévy flights, which were fitted to experimental data in the
latter reference. These PDFs, which have finite variance,
are defined in Appendix A. Depending on the value of the
cutoff parameter λ, they either exhibit overall Gaussian or
Lévy behavior. This is seen in Figure 3, where W (u)/W (0)
is plotted as a function of u/vth for σu/vth = 20%, α = 1.1
and λ = 0.01, 0.15, 5. When λ is decreased, the tails of the
PDF become fatter and its FWHM decreases in concert
because the variance is kept constant. As a result, for a
given variance, the fatter the tails of the fluctuation PDF,
the less affected the bulk of the line. The converse is true
for the apparent VDF tails (i.e. line wings), as shown in
Figure 4.

However, it should be pointed out that for this effect to
be observable, large amplitude velocity fluctuations of the
order of a few thermal velocity vth should actually occur.
Such fluctuations are therefore more likely to be observed
in astrophysics, where turbulence has a looser meaning,
i.e. that of unresolved movements.

6.3 Temperature fluctuations

Finally, we consider the case where only the ion tempera-
ture fluctuates, and for which the apparent VDF reads

fa(vz) =
∫ +∞

0

W (T )f(vz, T )dT. (33)

The latter is not a convolution product, in opposition to
the case of velocity fluctuations. To begin with, the ap-

Fig. 4. Plot of the apparent velocity distribution correspond-
ing to a truncated Lévy velocity PDF in a logarithmic scale.
The velocity is plotted in units of the thermal velocity vth. For
λ = 5 the apparent VDF is very close to a Gaussian and tur-
bulence only leads to a barely noticeable 4% increase in the
line width. In the opposite case where λ = 0.01 the existence
of an algebraic decay of exponent −α + 1 in the tail of the ap-
parent VDF is clearly seen. For v/vth < 10, the intermediate
case λ = 0.15 gives rise to the most significant effects.

parent temperature defined by equation (31), is given by

Ta =
∫ +∞

0

dT W (T )T = T0, (34)

and is therefore equal to the mean temperature of the
distribution W (T ). Hence, the apparent temperature Ta

always corresponds to the average temperature of the
plasma ions, regardless of the PDF shape. This general
and simple result concerning the apparent VDF fa width
contrasts with what is obtained for its shape. Indeed,
fa is given by a weighted sum of Gaussians of different
widths, and cannot be Gaussian itself. For a tempera-
ture PDF sharply peaked around T0, the actual deviations
from Gaussianity are not expected to be very significant,
because the dominant contribution in the integral of equa-
tion (33) comes from the neighborhood of T0. In the limit
where W (T ) = δ(T − T0), the Maxwellian with tempera-
ture T0 is recovered. This line of argument breaks down if
the width of the temperature PDF becomes too large, but
also for large velocities (vz > vth) even for moderate fluc-
tuations rates. Indeed, the value of f(T0, vz) scales with
vz as

f(T0, vz) ∝ exp
(
− v2

z

ξT0

)
, (35)

and therefore strongly decreases as vz increases. Conse-
quently, as shown in Figure 5, the contribution of the
maximum of the temperature PDF in the integral becomes
negligible for large enough vz. Therefore, the largest de-
viations from Gaussianity are expected to appear in the
apparent VDF tails, i.e. line wings. The actual extent of
these deviations depend on the fluctuation level, but most
importantly on W (T ) shape. As a rule of thumb, the slow-
est its asymptotical decay, the largest the deviations.
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Fig. 5. Plot of the local VDF f(T, vz) as a function of T for
three different values of the component of the velocity along the
LOS vz = vth, 2vth, 3vth, where vth is the thermal velocity for
30 eV. A model distribution W (T ), peaked around T0 = 30 eV
is also plotted (solid line). As vz is increased, the contribution
of T0 in the calculation of the apparent VDF becomes all the
more negligible than the tail of W (T ) decreases slowly.

For instance, an algebraic behavior for the tempera-
ture PDF implies a similar one for the measured profile.
The relation between the exponents can be obtained in
the following manner, noting that for large velocities the
apparent VDF can be approximated by

fa(vz) ∼
∫ +∞

v2
z/ξ

W (T )
1√
T

dT. (36)

Using then a power-law ansatz for the temperature PDF,
the following result is readily obtained

W (T ) ∝ 1
T α+1

⇐⇒ fa(vz) ∝ 1
|vz|2α+1

. (37)

For example, let us consider the case in which the temper-
ature fluctuations PDF is the Sinai distribution given by
equation (28), and plotted in a logarithmic scale in Fig-
ure 6 for k = 10, and for different values of δT/T0 ranging
from 10 to 30%. The bulk of the apparent VDF remains
very close to that of the Maxwellian at 30 eV (dotted line)
for every value of σ. However, the discrepancies become
important in the apparent VDF tails (i.e. Doppler line
wings), all the more so σ is increased. In addition, the
tails are found to exhibit a linear behavior in logarithmic
scale, which signals the expected power-law dependence.
The value of the exponent which characterizes this alge-
braic decay is −3 − 2/k in accordance to equation (37).
The k dependence can be checked on Figure 7 where the
apparent VDF is plotted for δT/T0 = 20% and for differ-
ent values of k (k = 0.5, 2, 10), i.e. different correlation
strengths. The stronger the correlations, the larger the
deviations from the Maxwellian. For k > 2, the appar-
ent VDF depends only weakly on the value of k, but then
when k becomes smaller than one, the deviations from the
Maxwellian diminish quickly. In the Sinai model, the tem-
perature PDF becomes Gaussian in the limit of vanish-
ing correlations, i.e. k → 0. The corresponding apparent

δ

Fig. 6. Plot of the apparent VDF on a logarithmic scale for the
Sinai PDF with k = 10 and the following values of the fluctua-
tion rate δT/T0 = 10, 20, 30%. These PDFs are plotted on Fig-
ure 2. vth stands for the thermal velocity for T0 = 30 eV. These
plots show the asymptotic power law behavior. The value of
the exponent is –3.2 here. The dotted line corresponds to the
Gaussian Doppler profile at the average temperature. The de-
viations from this Gaussian profile becomes more and more
important as σ grows.

δ

Fig. 7. Plot of the apparent VDF on a logarithmic scale for a
fluctuation rate δT/T0 = 10%, and for different values of k, k =
0.5, 2, 10. The values of the exponents characterizing algebraic
decay of the tails are respectively 7, 4 and 3.2. The dotted line
corresponds to the Gaussian Doppler profile characterized by
a thermal velocity vth.

VDF turns out to be indistinguishable from the average
Maxwellian over 5 orders of magnitude. Hence, Gaussian
fluctuations with δT/T0 = 20% leave the line shape prac-
tically unchanged. This somewhat surprising result given
the fluctuation rate, shows that characterizing tempera-
ture fluctuations solely by their variance is not sufficient
to estimate the resulting effects on Doppler line shapes. It
confirms the validity of the general results drawn from the
analysis of equation (33) in the special case of the Sinai
model, i.e. that long tails for the temperature PDF lead
to modifications in the line wings.
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In the frame of the Sinai model, the exponent α charac-
terizing the apparent VDF power law decay is larger than
3. Other turbulence models could lead to smaller expo-
nents. Let us indeed investigate the case in which the tem-
perature PDF is a Lévy distribution of indexes 0 < α < 1
and β = −1, denoted by Lα,−1(T ) (see Appendix A). In
this case W (T ) ≡ 0 for negative arguments, as should be
for the temperature field. The variance of one sided Lévy
distributions can be made finite by introducing a cutoff,
like in the symmetric case [41]. In the following, we con-
sider the cut-off parameter λ to be small enough so that
the PDF has a Lévy behavior over the whole range of in-
terest while having finite moments. The Fourier transform
f̃a(k) of the apparent VDF is given by

f̃a(k) =
∫ +∞

0

Lα,−1(T ) exp
(
−ξT

4
k2

)
dT, (38)

and can be calculated explicitly using the following re-
sult [42] which gives the Laplace transform of a Lévy
distribution

∫ +∞

0

Lα,−1(T ) exp(−sT )dT = exp(−sα/C), (39)

with s = k2/2m + ı0, C characterizing the width of the
temperature distribution and m standing for the emitters
mass. The apparent VDF is thus found to be a symmet-
rical Lévy distribution of indexes α′ = 2α and β′ = 0

fa(v) =
1
vα

L2α,0

(
v

vα

)
. (40)

where vα = (C1/α/2m)1/2. For example, for α = 0.5 the
apparent VDF (i.e. the Doppler line shape) is therefore a
Lorentzian. The whole line is thus affected by temperature
fluctuations in this case, because of the very fat tails of
the temperature PDF. Asymptotically,

fa(v) ∼ 1
|v|2α+1

, (41)

in accordance with equation (37). Here, the value of α is
such that 1 < 2α + 1 < 3 and therefore spans a different
range than in the Sinai model.

6.4 Discussion of the results

The study of the case where only one variable fluctuates
leads to several enlightening conclusions. First of all, the
Doppler profile is only affected by ion temperature and
fluid velocity fluctuations along the line of sight, in con-
trast to the line brightness which essentially reflects the
variations of the density. The line width, i.e. its second mo-
ment, is essentially affected by velocity fluctuations, the
effect being more significant for heavy emitters. For hydro-
gen lines, velocity fluctuations can therefore be neglected
if the study is restricted to the core of the line, as is usu-
ally done [9,11,12], whenever the fluctuation rate is such

that σu/vth � 30%. Temperature fluctuations having long
wings PDFs might also affect the bulk of the line, as exem-
plified by the one sided Lévy PDF case. The most conspic-
uous modifications occur on Doppler line wings, which are
significantly altered by turbulent velocity or temperature
fluctuations having non-Gaussian PDFs. More precisely,
long tails for the PDF translates into long tails for the
apparent VDF, i.e. slowly decreasing line wings. In this
sense, modifications on line wings are associated to inter-
mittency. The approach proposed here could give precious
information on the asymptotical behavior of the tempera-
ture fluctuations PDF, by allowing to check theoretical or
numerical predictions. At the very least, it should provide
an upper bound to the temperature PDF’s tails, which
can play an essential role in transport estimates. The
results thus obtained could be cross-checked using High
Frequency Charge Exchange Recombination Spectroscopy
(HF-CHERS) [14], from which time series of ion tempera-
ture fluctuations, and hence their PDF, can be measured
on the relevant time scales. This technique provides more
direct measurements, at the expense of a more compli-
cated experimental set-up which is not currently imple-
mented on any fusion device. Since the technique proposed
in this work is quite indirect, significant modeling efforts
are required to analyze the data. On the other hand, its ex-
perimental implementation requires only rather mild im-
provements of otherwise routine spectroscopy diagnostics.
The practical aspects are discussed in details in the next
section.

6.5 Experimental implementation

In this section, we first discuss the experimental relevance
of the results presented in this work, and then the model-
ing required to analyze the data.

Let us first comment on the Tore Supra spectra
which we have mentioned in the introduction, and which
prompted this work [20]. The measured Dα spectra dis-
played marked deviations from Gaussianity in the far line
wings, which were consistent with a power law behavior.
However, since these results were obtained as a by product
of routine measurements, the experimental conditions (i.e.
discharge characteristics and measurement chain) were
not optimized for line wings determination. As a result,
while clearly showing the existence of deviations from the
expected behavior in line wings, these experiments where
not entirely conclusive with respect to their wavelength
functional dependence. Increasing by one order of magni-
tude the dynamic range of the measurements would allow
to draw definite conclusions. We show in the following
that this can be achieved by performing discharges with
longer stationary phases to reduce noise in the data, and
by implementing tailored binning techniques in the CCD
readout. In fact, our formalism is valid for long integra-
tion times, whose value is in practice limited by the actual
duration of the discharge stationary phase during which
the measurements are performed. However, the intensity
of the Dα line is high enough so that excellent signal to
noise ratios (SNR) can be achieved with a high spectral
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resolution and acquisition times of the order of one second,
so that this is not a stringent constraint. Therefore, the
actual limitations are to be found in the spectrometer it-
self, namely stray light which could limit the intra-spectral
dynamic range, and the dynamical range of the CCD. The
former manifests itself in the tails of the apparatus func-
tion, which have to be carefully measured. Indeed, even for
an idealized spectrometer (i.e. neglecting aberrations and
scattering at the surfaces of optical elements), diffraction
is unavoidable and leads to a slow decrease of the appara-
tus function [37]. For CCDs, dynamic ranges of four orders
of magnitudes, corresponding to a 16 bits AD (Analog to
Digital) converter, are commonly available (this was used
for the Tore Supra measurements). This gives the dynamic
range achievable during one exposure of the CCD, and can
be further improved by averaging successive exposures. If
the most important source of noise comes from the read-
out process (this happens for low intensities, e.g. in the
wings), it is better in terms of SNR to increase the acqui-
sition time τm instead of averaging N spectra with shorter
acquisition times τm/N , while the two solutions are equiv-
alent if photon shot noise dominates. The best way to
proceed would therefore be to choose the acquisition time
large enough so that the full dynamic range is used, and
then average over as much similar frames as possible. Sat-
uration in the center of the line should be avoided because
of charge blooming, and in order to fully take advantage
of the detector dynamics, the later should be cooled as
much as necessary so as to reduce dark currents to the
lowest achievable level. For integration times of the order
of one second, the latter can in practice be reduced to in-
significant levels, that is smaller than the readout noise.
If needed, tailored charge binning procedures, i.e. sum-
ming charge from adjacent pixels prior to readout, can
be implemented [43]. These can considerably improve the
dynamical range of the detector when the binning factor
in the direction parallel to the spectrometer slit height is
determined from the intensity [43,44]. The idea there is to
reduce the number of pixels binned in the slit height direc-
tion where the intensity is large, so as to avoid saturation
of the serial register or the output node of the CCD. Con-
versely, for low intensities binning over all available pixels
is performed. If the minimum meaningful detection level is
defined by a SNR value of 5, which would typically corre-
spond to 20 counts, and 100 pixels are available in the slit
height direction, with a 16 bits AD converter the intra-
spectral dynamic range would be of the order of 3 × 105

instead of 3 × 103. Hence, measuring line shapes over
4–5 orders of magnitude in intensity with a SNR of 5 at the
lower end of the intensity range is experimentally achiev-
able with existing techniques. Further improvement of the
SNR can be obtained by averaging successive frames.

Now we come to the Tokamak setting of the measure-
ments. First, it should be pointed out again that in edge
plasmas there exists a regime where Doppler broadening
is dominant in the line wings, and that this regime is in
principle experimentally accessible. Moreover, there is no
strong impurity line which falls in the blue wing (λ < λ0)
of Dα. In particular, the contribution of the He II Brβ line

at λ0 = 6560.1 Åis negligible, unless large quantities of he-
lium are injected [45], and O II lines are also too weak to
be observed in normal operation. This has been illustrated
by the measurements performed in the Tore supra Toka-
mak [20], were no strong disturbances were seen. Next,
let us discuss the modeling aspects. The analysis would
proceed by forward modeling, i.e. by comparison between
a Doppler profile calculated assuming a given PDF for
the turbulence, and the experimental profile. Firstly, com-
paring to an experimental spectra requires to reconstruct
the total spectra, that is to include contributions of the
classes of neutrals which are not locally created by charge
exchange, as mentioned in Section 3.1. This can be done
most accurately by using a neutral transport code, e.g.
EIRENE [46], which solves the Boltzmann equation for
the neutral VDF retaining the relevant atomic processes
in a realistic geometry. The influence of turbulent fluctua-
tions on these classes of neutrals is much weaker. In fact,
the VDF of neutrals created by molecular dissociations
is only very weakly sensitive to the edge plasma param-
eters [47] (unless the changes are drastic, such after gas
puffing, a situation which is excluded here), and fluctua-
tions in the inner plasma have a much smaller amplitude
than in the edge, and thus does not significantly affect
the VDF of neutrals created by charge exchange there.
Such an approach would also allow to properly take into
account integration along the line of sight. The latter ef-
fect can however be starkly reduced if the line of sight is
carefully chosen. The overall accuracy of such a calculation
essentially depends on the extent to which the plasma pro-
files are known. It can be estimated by varying these input
parameters, and depends on the detailed experimental set-
tings. The uncertainties on the plasma parameter are rea-
sonable, since the plasma profiles are routinely measured
using Thompson Scattering, Electron Cyclotron Emission,
Reflectometry and Recombination Charge Exchange Spec-
troscopy, e.g. [48,49].

Finally, we come to the modeling of turbulent fluctua-
tions. The first problem to address is the relevance of the
approximation retaining only one fluctuating parameter.
Measurements performed in the so-called TFTR supershot
discharges have shown that parallel velocity fluctuations
rates are almost one order of magnitude smaller than ion
temperature fluctuations [14]. This suggests that, at least
for these kind of discharges, when the LOS is parallel to
the magnetic field, ion temperature fluctuations should
have a dominant effect on line shapes, hence justifying
the neglect of all other fluctuations. If velocity fluctua-
tions measurements are not available, the most straight-
forward way to give theoretical ground to this approxima-
tion would be to rely on numerical integration of a set of
fluid equations describing edge turbulence and including
ion temperature fluctuations, which would allow calcula-
tion of the apparent VDF from equation (15). The ion
temperature PDF could be obtained from the same sim-
ulation, and then used to recompute the apparent VDF
from equation (33). More generally, equation (13) allows
the calculation of the profile for any PDF obtained from
numerical or analytical calculations.
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7 Apparent non-Boltzmann statistics

For the sake of simplicity, let us only consider temper-
ature fluctuations here. The fact that the apparent VDF
can be a Lévy distribution highlights a connection between
spectroscopy, turbulence and anomalous statistics involv-
ing power-law tails, such as the Lévy statistics. Indeed,
it should be emphasized that in the case where no other
observable than the spectral line shape is available (e.g.
in Astrophysics), it is by no mean possible to determine
whether the observed plasma is actually turbulent or ho-
mogeneous. Therefore, if the temperature PDF is a Lévy
distribution Lα,−1(T ), the Doppler spectra might be inter-
preted as resulting from an homogeneous and stationary
plasma governed by Levy statistics. In other words, ev-
erything happens as if the plasma under study were in
a non-equilibrium stationary state characterized by the
Lévy distribution of equation (40). This stationary state
can be seen as resulting from a relaxation process gov-
erned by the following Fractional Fokker-Planck Equation
(FFPE) [20,50,51]

∂fa(v, t)
∂t

= ν̄
∂

∂v
[vfa] + D̄

∂2αfa

∂|v|2α
. (42)

where ν̄ and D̄ are such that D̄/ν̄ = 2αc/(2m)α. Here, the
fractional derivative is defined in the sense of Riesz [42]

∂2αfa

∂|v|2α
= TF−1

[
−|k|2αf̃eff

]
. (43)

The usual Fokker-Planck equation (FPE) is recovered for
α = 1. In our case α < 1, and the apparent VDF cannot be
Gaussian. The main physical difference between the FPE
and the FFPE given by equation (42) is the spatial non
locality of the latter, obvious from the definition of the
fractional derivative. This non locality is a consequence of
the existence of flights connecting distant regions in the
velocity space (the so-called Lévy flights). This property
can be traced back to the underlying description of the
turbulent plasma. Indeed, at the microscopical scale the
trajectory of the radiators can be modelled by a Langevin
equation with Gaussian white noise [52,53]. This model
describes the collisional relaxation of the local velocity
distribution toward the local Maxwellian equation (8). Us-
ing the fluctuation-dissipation theorem and the expression
of the diffusion coefficient stemming from a random walk
model [53] leads to

〈∆v2〉
τj

∼ ν
kBT

m
, (44)

where T is the local temperature and τj the typical time
between two jumps in the velocity space. Temperature
thus determines the characteristic size of jumps in the
velocity space. Therefore, high probabilities for large tem-
perature fluctuations in the actual turbulent plasma imply
high probabilities for flights in the apparent velocity space.
This provides a simple physical picture explaining why the
temperature PDF and the apparent VDF asymptotical

behavior are linked, and leads to a deeper understand-
ing of equation (37). Our results are reminiscent of those
presented in references [52,54,55], where a similar inter-
pretation of Tsallis non extensive statistical mechanics oc-
currence was proposed. The latter case arises if the tem-
perature PDF is such that 1/T is gamma distributed [54].
Let us emphasize that in our model, the temperature PDF
shape is not arbitrary. In fact, it has to be determined
from the fluid equation satisfied by the temperature field
in the plasma under consideration, in which relevant ex-
pressions for both the source term and the flux have to be
specified (see Eq. (7)). For each of these expressions, the
non-linear character of the latter equation should give rise
to a different non-Gaussian statistical behavior, i.e. lead
to a specific PDF, and therefore to a particular apparent
statistics. A natural extension of this work would be to
determine what properties fluid equations should have so
as to lead to a Lévy distribution for temperature.

8 Conclusion and perspectives

In this paper, we have presented a model retaining low
frequency turbulence in Doppler line shape calculations.
This approach is in particular relevant to the modeling of
lines routinely measured in edge plasmas of fusion devices.
We have shown that in presence of low frequency turbu-
lence, a straightforward analysis of Doppler profiles yields
an apparent velocity distribution function. This apparent
VDF is a spatial and time average of the local VDF. To in-
vestigate its shape, we have used a statistical description
of the plasma turbulent fluctuations, relevant whenever
the acquisition time of the spectrometer is large with re-
spect to the typical turbulent time scale. The resulting
expression for the apparent VDF involves the joint Prob-
ability Density Function of the fluctuating fields. Next,
considering the case where only one variable fluctuates,
we have obtained several new results. While density fluc-
tuations do not affect Doppler line shapes, velocity or ion
temperature fluctuations can influence line shapes, and in
particular line wings. This is especially the case when their
PDF have long tails such as power laws. It might there-
fore be possible to diagnose such a behavior by the mean
of line shapes, once Stark effect has been carefully ruled
out. A reliable comparison with experiments would imply
dedicated measurements which are not yet available, but
also further modeling. In particular, the use of a turbu-
lence code would be very helpful for diagnosis purposes,
and this possibility will be investigated in a future work.
From a more fundamental point of view, our work sheds
light on some possible connections between turbulence,
spectroscopy and non Boltzmann statistics, such as those
involving Lévy or Tsallis distributions. Our approach fur-
thermore relates the occurrence of one of these particular
statistics to the properties of the fluid equations describing
turbulence. It thus provides a frame to investigate both ex-
perimentally and theoretically some of the fundamentals
aspects of the statistical properties of the physical observ-
ables in out of equilibrium plasmas.
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Appendix A: Lévy distributions

We present here the definitions of the various Lévy distri-
butions used in this work. These distributions cannot in
general be expressed analytically, but their Fourier trans-
form can. The following convention for the inverse Fourier
transform will be used

f(x) =
1
2π

∫ +∞

−∞
f̃(k) exp(−ikx). (45)

In the Fourier space, the Lévy distribution Lα,β(x) is
given by

ln L̃α,β(k) = −C|k|α
(

1 + iβ
k

|k|ω(k, α)
)

, (46)

where C controls the width of the distribution, and the
function ω(k, α) is defined by

ω(k, α) = tan(πα/2) for α �= 1,

= (2/π) ln |k| for α = 1. (47)

α is called the index of the distribution , and takes the val-
ues 0 < α < 2. To avoid overly cumbersome notations, we
do not label Lα,β with C, but it should be kept in mind
that the latter can assume any arbitrary positive value
(this notation differs from the one we used in Ref. [19],
where C = 1 was implied). The parameter β is such that
−1 < β < 1, and controls the asymmetry of the distribu-
tion. In fact, Lévy distributions are symmetric for β = 0,
and one sided for β = ±1. For β = −1, the distribution is
non zero for x > 0 when the convention of equation (45) is
adopted. The limiting case α = 2 and β = 0 corresponds
to the Gaussian distribution, but there is no smooth tran-
sition as α → 2−. In particular, for x large

Lα,β(x) ∼ Aα,β

|x|α+1
. (48)

Lévy distributions have an infinite variance, as can easily
be checked in the Fourier space or from their asymptotic
behavior. A possible remedy for this generally unphysical
feature is to introduce a cut-off of the power-law behavior
in the tails of the distribution. This procedure leads to the
so called truncated Lévy flights, whose PDF retains an an-
alytical form in the Fourier space in the version proposed
in reference [41]. In the symmetric case, the corresponding
characteristic function is given by

ln P̃α,λ(k) =
C

cos
(

πα
2

)

×
[
λα − (k2 + λ2)

α
2 cos

(
α arctan

|k|
λ

)]
, (49)

where λ is the cutoff parameter. The variance σ of the
PDF is obtained from the second derivative of the char-
acteristic function, which yields

σ2 =
α(α − 1)

λ2−α cos(πα/2)
C (50)

Fig. 8. Comparison between the truncated Lévy flight PDF
Pα(x) with α = 1.1, λ = 0.4 and σ = 0.2 and the limiting Lévy
distribution corresponding to λ → 0.

In the limit λ → 0, the usual symmetric Lévy distribu-
tion is recovered, and σ → +∞. For any given σ, the
characteristic function reduces to that of a Lévy distri-
bution for k � λ, and to that of a Gaussian for k � λ.
The wings of the PDF Pα,λ(x) are therefore Gaussian for
x � 2π/λ, thus ensuring the convergence of its moments.
An illustration of this behavior is provided on Figure 8,
where the truncated Levy flight PDF Pα,λ(x) calculated
for α = 1.1, σ = 0.2 and λ = 0.4 is compared to the cor-
responding Lévy distribution. Note that if λ > 2π/σ, the
PDF becomes essentially Gaussian.
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